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ABSTRACT
Motivation: Capturing the molecular diversity of living cells is not
straightforward. One approach is to measure molecular markers
that serve as indicators of specific biological conditions or pheno-
types. This is particularly relevant in modern medicine to provide
precise diagnostics and pinpoint the best treatment for each patient.
The challenge is to select a minimal set of markers whose activity
patterns are in correspondence with the phenotypes of interest.
Results: This article approaches the marker detection problem
in the context of discrete phenotypes which arise, for example,
from Boolean models of cellular networks. Mathematically this
poses a combinatorial optimization problem with many answers.
We propose a solution to this optimization problem that is based
on the modelling language answer set programming (ASP). A case
study of a death cell receptor network illustrates the methodol-
ogy. Discussion and code: For code, discussions and reporting
errors visit https://github.com/hklarner/detection_of_markers_for_
discrete_phenotypes.
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1 INTRODUCTION
1.1 Biological background
In 2001, the National Institutes of Health’s Biomarkers Definitions
Working Group defined a biomarker as “a characteristic that is ob-
jectively measured and evaluated as an indicator of normal biologic
processes, pathogenic processes, or pharmacologic responses to a
therapeutic intervention”, see [8]. Among biomarkers, molecular
biomarkers can disclose changes in gene copy number, gene mu-
tations, alterations of the levels of gene or protein expression or
variations of the functional activity of a component. They have a
wide array of uses in a variety of fields, including medicine, de-
velopmental biology, and basic scientific research. In particular,
the use of biomarkers has increased greatly in precision medicine
to diagnose pathogenic processes, to assess patient prognosis, to
select the best treatment for each individual, as well as to evalu-
ate risk of developing diseases. However, the clinical translation
of novel molecular biomarkers predicting disease susceptibility,
progression or treatment outcome remains poor, in particular for
complex diseases, such as Alzheimer and related forms of dementia,
cancer, diabetes and heart disease, with less than two approvals
per year across all diseases among thousands of potential identified
biomarkers. This lack of success can arise from experimental limi-
tations of the biomarker discovery pipeline. In addition, because
these diseases consist of various pathophysiological processes, re-
sulting from multiple molecular and environmental factors, and
exhibit variable disease course and response to therapy, a single
biomarker rarely fulfills all necessary criteria for a comprehensive
diagnostic or prognostic assessment, see [1]. There is therefore an
unmet need for multi-marker discovery using biomarkers reflecting
different pathophysiologies that could be used in routine clinical
practice, see [3]. Analysis of data in terms of complex networks
may help to identify these key biomarkers. This path requires a mul-
tidisciplinary approach, engaging researchers in numerous fields:
biologists, informatics specialists, and mathematicians.

1.2 Mathematical background
In its essence the marker detection approach proposed in this article
is one of combinatorial optimization. The input to this problem
consists of a list of binary vectors whose coordinates designate the
available molecular components, and whose values indicate the
activity or abundance of the respective component. Each vector is
an abstract representation of a state of the biological system. Usually
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these states will belong to the long-term behaviors of the system,
the so-called attractors, but technically this is not a requirement.

We are aware of two distinct settings to which our work is ap-
plicable. First, such binarized states are the output of discretization
algorithms that are frequently a preliminary step to the analysis of
continous gene expression data. For an example in the context of
time series data, see [5].

Second, they are the principal output of discrete models of molec-
ular interaction networks. A prominent example of discrete models
are Boolean interaction networks. These consist of Boolean vari-
ables that are governed by fixed update functions and some assump-
tion about the number of variables that are permitted to change
state simultaneously during a state transition. While reachability
questions, the enumeration of all attractors and descriptions of the
basins of attraction are currently limited to medium-sized models of
about 50 components, see [10], the detection of steady states is feasi-
ble for large networks of hundreds of components and more, see for
example [2]. In the context of this paper we assume that the steady
states capture the phenotypes under investigation. For a survey on
Boolean networks in systems biology, see for example [12, 14].

The overall challenge we are facing is therefore to nominate
multi-element markers that are 1) minimal and therefore low cost,
and 2) respect the practical limitations of available marker candi-
dates. The relationship between the solutions of a marker detection
problem and its underlying Boolean network model, if there is one,
is also of interest.

1.3 Summary
The article is organized in five sections. Sec. 2 introduces the no-
tation for Boolean networks and basic set theory required in this
text. It is followed by Sec. 3 which defines phenotypes and marker
types for steady states and introduces the notions of consistency
and marker component equivalence. The methods section, Sec. 4,
gives details on our ASP encoding of the marker detection problem.
A case study which illustrates the full methodology for a death
cell receptor model published in [4] is presented in Sec. 5. The
discussion and outlook are given in Sec. 6.

2 DEFINITIONS AND NOTATION
A Boolean network of n components is an n-dimensional Boolean
function f = (f1, . . . , fn ) with fi : Bn → B where B = {0, 1}
are the Boolean values. A state is a n-dimensional Boolean vector
x = (x1, . . . ,xn ). The synchronous update of a state x is the image
of x under f , i.e., f (x) = (f1(x), . . . , fn (x)). A steady state is a fixed
point of f , that is, a state that satisfies f (x) = x . The interaction
graph is a directed graph (V ,A) where an arc (i, j) ∈ A captures the
dependence of fj on the variable xi .

Example 2.1 (toy problem). The toy network consists of six com-
ponents with two positive feedback loops f1 = x2, f2 = x1, f3 =
x4, f4 = x3 and two read-out nodes whose update functions are
f5 = x2 ∧ x4, f6 = x2 ∨ (¬x2 ∧ ¬x3). It has four steady states
S = {000001, 110001, 001100, 111111}.

The power set of a set A is denoted by P(A) = {B | B ⊆ A}.
Given two families of subsets X,Y ∈ P(P(X )), we denote by ⊗ the
set-product X ⊗ Y B {X ∪ Y | X ∈ X,Y ∈ Y}. If Z = X ⊗ Y we say

that Y,X are factors of Z. The set-product is often useful for giving
concise descriptions of set families with many elements.

An equivalence relation ∼ on a setA induces a partition ofA into
k blocks A1, . . . ,Ak with Ai ⊆ A and Ai ∩ Aj = ∅ for all i, j and
A1 ∪ · · · ∪Ak = A. We call blocks of size one trivial blocks.

The number of elements of a set A is denoted by |A|.

3 MARKERS AND PHENOTYPES
The term phenotype refers to the classification of individual or-
ganisms by observable traits. The traits are determined, essentially,
by the organism’s genotype and the influence of environmental
factors. More specifically, when studying mathematical models of
biological systems, a phenotype usually refers to the expression
pattern of specific components of interest under the assumption
that the system has reached an attractor.

In this text we focus on the steady states of a network and define
the phenotypes by partitioning the steady states according to given
phenotype components. Let S be the steady states of a Boolean
network and P ⊆ V a set of phenotype components with |P | = k .
A phenotype p ∈ Bk is the projection of a state x ∈ S onto the
phenotype components. We denote by πP : Bn → Bk the projection
of x onto P . For each phenotype p we define the phenotype states
χp (S) by χp (S) B {x ∈ S | πP (x) = p}.

Analogously, we define marker components, or markers for short,
as a subsetM ⊆ V and the marker-type as a state ofM . Note that,
mathematically, markers and phenotypes are therefore objects of
the same type.

Example 3.1 (toy problem). Suppose the phenotype components
are P = {4, 5} and the marker components are M = {1, 2}, then
there are three phenotypes πP (S) = {00, 10, 11} and two marker-
types πM (S) = {00, 11}.

3.1 Consistency between markers and
phenotypes

In practice, we are given phenotype components and are asked to
find marker components such that the phenotypes and the marker-
types are consistent across all the steady states. That is, given only
the marker-type of a steady state the phenotype must be uniquely
deducible.

Definition 3.2 (consistency). The markersM are consistent with
the phenotype components P on S iff ∀x ,x ′ ∈ S : πM (x) =
πM (x ′) =⇒ πP (x) = πP (x

′).

Note that this definition allows a 1-to-many relationship between
the phenotypes and the marker-types on S . In practice this may
introduce an unnecessary complexity in the experimental setup.
If we are interested in 1-to-1 relationships we need to demand in
addition that P is consistent with M in which case we say that P
andM are equivalent.

Usually, to reduce the cost of adding markers or of reading
marker values, we are furthermore interested in subset minimal
markers M and the exclusion constraint which limits the marker
candidate space toM ⊆ U withU = V \ P .

Example 3.3 (toy problem). Suppose we are interested in sub-
set minimal markers and the exclusion constraint. The markers
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M = {1, 2} are not consistent with P = {4, 5} because the steady
states x = 000001,y = 001100 satisfy πP (x) = 00 , πP (y) = 10
but πM (x) = 00 = πM (y). The markers M ′ = {1, 3} are consis-
tent with P but M ′ and P are not equivalent because |πP (S)| = 3
and |πM ′(S)| = 4. Finally, the markers M ′′ = {3, 6} are equiva-
lent to P . While M ′′ is the unique marker set that is equivalent
to P , there is a family of three consistent marker sets, namely
{{1, 3}, {2, 3}, {3, 6}}.

3.2 Marker component equivalence
Marker detection problems often have hundreds of solutions. We
have noticed that this is partly due to an equivalence relation on
V that partitions V into blocks of interchangeable components. In
a sense, components within the same block carry the same infor-
mation with regards to steady state identification. Intuitively, two
components are equivalent if their activities are locked in a fixed
relationship across all steady states under consideration.

Definition 3.4 (Steady state correlation). Two components i, j ∈ V
are correlated across the steady states S if either ∀s, s ′ ∈ S : si = sj
or ∀s, s ′ ∈ S : si , sj . We write i ∼S j.

The key observation is that correlated components are inter-
changeable inmarker sets. That is, given i, j ∈ V with i ∼S j and sup-
pose that i ∈ M for a marker setM ⊆ V . ThenM ′ B (M \ {i})∪ {j}
is another valid marker set and of the same consistency type.

Note that the steady state correlation is independent of the
specification of phenotype components and therefore holds for
all choices of P . In fact, the relation ∼S is an equivalence relation
on V and correlated components hence form blocks of a partition
of V .

Example 3.5 (toy problem). The blocks of the steady state cor-
relation are B = {{1, 2}, {3, 4}, {5}, {6}}, two are trivial and two
are non-trivial. Since M = {2, 3} is a marker set and {1, 2} ∈ B, it
follows by the observation above thatM ′ = {1, 3} is another valid
marker set.

4 MATERIALS AND METHODS
4.1 Introduction to ASP
Answer set programming (ASP) is a particular form of logic pro-
gramming. Mathematical problems are modelled in this language
by stating rules over user-defined predicates. The answer sets of a
program correspond to the solutions of the mathematical problem.
ASP solvers like clasp [7] are capable of enumerating all subset
minimal answer sets.

ASP has been applied to problems in bioinformatics before, see
for example the computation of minimal interventions in logical
signaling networks [9]. The ASP modelling language is well-suited
for combinatorial problems and the clasp solver outperforms a brute
force detection algorithm significantly. Encoding a mathematical
problem in ASP and debugging can be tricky but small changes in
the mathematical problem often correspond to small changes in
the ASP program. In contrast, imperative programs often require
large changes to adapt to variations of the mathematical problem.

The following quick introduction to ASP is given in terms of the
input language gringo [6]. An atom is a function symbol followed
by terms which are either constants or variables. Examples of atoms

are f(c,10) and g(X) where c and 10 are constants and upper-
case letters, like X, denote first-order variables. A rule is a language
construct that denotes an implication and consists of a head, the
implicant, and a body, a conjunction of atoms followed by a full
stop. The implication symbol is :- and means "if". An example is
f(c) :- g(1), g(10) which makes f(c) true if both g(1) and
g(10) are true. A rule without a body is called a fact and its head
is unconditionally considered true. Facts are a means of including
data into the program. An answer set consists of all atoms that are
derivable by rules of the program.

For our encoding of the marker detection problem we need
two more gringo language constructs. An integrity constraint is
a rule without a head. It serves as a solution filter that removes
answer sets that satisfy the body. An example is :- f(a), g(10).
A choice rule is a construct for stating that any subset of set of
atoms may be considered factual, i.e. as fact. It is often used to
define the candidate space for combinatorial problems. An example
is {f(1), f(5), f(12)}. It states that any of the 8 subsets of the
3 atoms may be considered factual. Instead of enumeration, condi-
tional statements using : are allowed and sometimes necessary. An
example of a conditional choice rule is {f(I): g(I), not h(I)}.
Here, not h(I) is the classical negation which evaluates to true for
all values of I for which h(I) can not be derived. The count of true
atoms in a choice rule can be limited above and below by adding
the integer values: 3 {f(I): g(I), not h(I)} 10.

4.2 Encoding of the marker detection problem
The first step is to encode the steady states. We use the predicate
x(I,J,K) to encode the steady state data. Here, 0 ≤ i < |S | is the
identifier of a steady state, j ∈ V is the index of a component and
k ∈ B is the value of j in the ith steady state.

The following line numbers refer to Table 1. The predicate
forbidden(J) states the indices j ∈ V that are excluded from
the marker detection problem. The phenotype components are de-
clared by the predicate p(J) where j ∈ V . The marker component
candidates are encoded by the predicate m(J) and defined via the
choice rule in Line 14. Here, the underscores in the predicate x are
place holders for which clasp allows any value.

Next we introduce the predicate different_phenotype(S1,S2)
for steady states s, s ′ ∈ S to be true if their phenotypes are different.
Since the steady states are Boolean vectors we may simply enu-
merate the two cases under which s, s ′ are of different phenotype,
namely if there is a phenotype component for which the expression
in the steady states differs.

Note that we could instead introduce equal_phenotype(S1,S2),
but it is our observation that the "exists counterexample" formu-
lation performs better than the "all values are equal" formula-
tion. With the intention of increasing the computational efficiency
we introduce a rule that states that the predicate is symmetric:
different_phenotype(S1,S2):-different_phenotype(S2,S1).
The predicate different_marker_type(S1,S2) is defined analo-
gously.

We use one integrity constraint to enforce the consistency of
markers with phenotypes, see Line 27. An optional second integrity
constraint may be added to achieve equivalence, see Line 30.

The full program for the toy problem is listed in Table 1.
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Table 1: ASP encoding of marker detection for toy problem

1 % steady states
2 x(0,0,0). x(0,1,0). x(0,2,0). x(0,3,0). x(0,4,0). x(0,5,1).
3 x(1,0,1). x(1,1,1). x(1,2,0). x(1,3,0). x(1,4,0). x(1,5,1).
4 x(2,0,0). x(2,1,0). x(2,2,1). x(2,3,1). x(2,4,0). x(2,5,0).
5 x(3,0,1). x(3,1,1). x(3,2,1). x(3,3,1). x(3,4,1). x(3,5,1).
6
7 % phenotype components
8 p(4). p(5).
9
10 % exclusion contraint
11 forbidden(4). forbidden(5).
12
13 % marker components
14 1 m(C) : x(_,C,_), not forbidden(C).
15
16 % marker-types
17 different_marker_type(S1,S2) :- x(S1,C,1), x(S2,C,0), m(C).
18 different_marker_type(S1,S2) :- x(S1,C,0), x(S2,C,1), m(C).
19 different_marker_type(S1,S2) :- different_marker_type(S2,S1).
20
21 % phenotypes
22 different_phenotype(S1,S2) :- x(S1,C,0), x(S2,C,1), p(C).
23 different_phenotype(S1,S2) :- x(S1,C,1), x(S2,C,0), p(C).
24 different_phenotype(S1,S2) :- different_phenotype(S2,S1).
25
26 % consistency
27 :- different_phenotype(S1,S2), not different_marker_type(S1,S2).
28
29 % equivalence
30 :- different_marker_type(S1,S2), not different_phenotype(S1,S2).
31
32 % output
33 #show m/1.

5 RESULTS
5.1 Markers for a Boolean death receptor

model
In this case study we compute markers for the death receptor model
published in [4]. The network is a model of the cross talk between
the NFkB pro-survival pathway, the RIP1-dependent necrosis path-
way and the apoptosis pathway. The pathways are stimulated via
the cytokines TNF and FASL, which are input components of the net-
work, and the response is modelled via the phenotype components
P = {Survival ,NonACD,Apoptosis}.

The network consists of 28 components and has 27 steady states.
The steady state detection is completed instantly on a personal
computer using the python package pyboolnet, see [11]. There are
four phenotypes with between six and eight steady states in the
respective class. The steady state correlation detects seven non-
trivial blocks. The blocks form tree or cascade like structures when
mapped onto the interaction graph of the model, see Figure 1. Five
blocks are representable by one of the following root components
{apoptosome,CASP8,RIP1,MOMP ,RIP1ub}, the other two blocks
involve feedback loops.

We computed the subset minimal marker sets for four scenarios
that are the result of all combinations of two binary parameters. The
first parameter determines the consistency type between marker-
type and phenotype. Its values are either 1-to-1 or 1-to-many. The
second determines whether the exclusion constraint for P is enabled.
Table 2 lists the marker families by number of components required
and parameter values. The marker detection is solved instantly on
a personal computer.

Scenario 1: Subset minimality and equivalence required, exclu-
sion constraint enabled. There are 126 markers, all of size 3. In

ATP

NonACD apoptosome

Apoptosis

BAX

MOMP

BCL2

MPT

CASP3

CASP8

NFkB

RIP1

Cyt_c

DISC_FAS DISC_TNF

FADDFASL

IKK

SMAC

ROS

SurvivalXIAP cFLIP

cIAP RIP1K

RIP1ub

TNF

TNFR

Figure 1: The blocks of the steady state correlation analy-
sis of the death receptor model. Nodes without color belong
to trivial blocks. Note that most blocks are tree-like. These
have roots which can be seen as representatives of their
blocks. They are highlighted with thick borders.

set-product notation they are

{{BCL2}, {IKK}, {NFkB}, {RIP1ub}, {XIAP}, {cFLIP}} ⊗ L1

where L1 consists of 21 component pairs, including, for example
{CASP3,MOMP}, {MPT , SMAC}, {MOMP ,ROS}. An example of a
validmarker set in this scenario is therefore {BCL2,CASP3,MOMP}.
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Table 2: The number ofmarkers of the death receptormodel
for four different parameter combinations.

# marker com-
ponents

# marker sets consistency
type

exclusion con-
straint

3 126 1-to-1 active

3 231 1-to-1 inactive

3 216 1-to-many active
4 54
5 54

3 369 1-to-many inactive
4 82
5 82

Note that the first factor corresponds to the purple block in the
steady state correlation analysis of Figure 1.

Scenario 2: Subset minimality and consistency required, exclu-
sion constraint enabled. In this scenario we require only consistency
between marker-types and phenotypes, not equivalence. There are
324 markers of sizes 3, 4, 5, and we denote the respective subset of
equal sized markers by X3,X4,X5. In set-product notation they are

X3 ={{BCL2}, {IKK}, {NFkB}, {RIP1}, {RIP1K}, {RIP1ub},
{XIAP}, {cFLIP}} ⊗ L2

X4 ={{DISC_FAS}} ⊗ {{TNF }, {TNFR}} ⊗ L2

X5 ={{FADD}} ⊗ {{FASL}} ⊗ {{TNF }, {TNFR}} ⊗ L2

where L2 consists of 27 pairs of components, including, for example
{ATP , SMAC}, {CASP8,ROS}, {CASP3,Cyt_c}. Note that the first
factor of X3 is the union of the purple and yellow blocks in Figure 1.
Similarly, the factors ofX4,X5 are unions of the trivial blocks FADD
and FASL and the brown block.

Examples of valid marker sets Y3,Y4,Y5 of sizes 3, 4 and 5 are
therefore

Y3 = {RIP1,ATP , SMAC}

Y4 = {DISC_FAS,TNF ,CASP8,ROS}

Y5 = {FADD, FASL,TNF ,CASP3,Cyt_c}

6 DISCUSSION
The results in this paper give theoretical foundations to a central
problem in the design of multi-marker experiments. We have intro-
duced a notion of consistency betweenmarkers and phenotypes and
demonstrated that the enumeration of all subset minimal consistent
marker sets is instantaneous for medium-sized Boolean networks.
Furthermore, the steady state correlation analysis leads to an in-
teresting tool, the map of interchangeable marker components of
Fig. 1. With it one may transform any valid marker set into other
valid sets and detect, broadly speaking, clusters in the interaction
graph that separate steady state information. It seems possible to

extend the underlying relation ∼S from V to P(V ). This might be
fruitful when further exploring the structure of marker families.

The next steps are to validate the theoretical results of this work
experimentally in a follow-up study on a recently published model
of epithelial-to-mesenchymal transition (EMT), see [13]. Here, se-
lected markers will be used to experimentally distinguish between
cells that acquire distinct phenotypes on the EMT continuum during
cancer progression.

Also, the factorizations in Sec. 5 are of a heuristic nature, and we
do not yet have rigorous mathematical statements with regards to
minimal factorizations. The product description seems promising,
as it reveals 1) the number of independent choices and 2) the number
of options for each choice. Research in this direction may lead to
some notion of marker building blocks.
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